3.140 \(\int \frac {\cos ^3(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=145 \[ -\frac {75 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {9 \sin (c+d x)}{4 a^2 d \sqrt {a \cos (c+d x)+a}}-\frac {\sin (c+d x) \cos ^2(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}+\frac {13 \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}} \]

[Out]

-1/4*cos(d*x+c)^2*sin(d*x+c)/d/(a+a*cos(d*x+c))^(5/2)+13/16*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^(3/2)-75/32*arctan
h(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)+9/4*sin(d*x+c)/a^2/d/(a+a*cos(d*x+c
))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2765, 2968, 3019, 2751, 2649, 206} \[ \frac {9 \sin (c+d x)}{4 a^2 d \sqrt {a \cos (c+d x)+a}}-\frac {75 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sin (c+d x) \cos ^2(c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}}+\frac {13 \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(-75*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - (Cos[c + d*x
]^2*Sin[c + d*x])/(4*d*(a + a*Cos[c + d*x])^(5/2)) + (13*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2)) + (
9*Sin[c + d*x])/(4*a^2*d*Sqrt[a + a*Cos[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 2765

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3019

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_
.)*(x_)]^2), x_Symbol] :> Simp[((A*b - a*B + b*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(a*f*(2*m + 1)), x] + D
ist[1/(a^2*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b*B - a*C) + b*C*(2*m + 1)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^3(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx &=-\frac {\cos ^2(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {\int \frac {\cos (c+d x) \left (2 a-\frac {9}{2} a \cos (c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {\cos ^2(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {\int \frac {2 a \cos (c+d x)-\frac {9}{2} a \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {\cos ^2(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac {13 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {-\frac {39 a^2}{4}+9 a^2 \cos (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {\cos ^2(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac {13 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {9 \sin (c+d x)}{4 a^2 d \sqrt {a+a \cos (c+d x)}}-\frac {75 \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {\cos ^2(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac {13 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {9 \sin (c+d x)}{4 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {75 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{16 a^2 d}\\ &=-\frac {75 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\cos ^2(c+d x) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac {13 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {9 \sin (c+d x)}{4 a^2 d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 4.05, size = 216, normalized size = 1.49 \[ \frac {\cos ^5\left (\frac {1}{2} (c+d x)\right ) \left (128 \sin \left (\frac {c}{2}\right ) \cos \left (\frac {d x}{2}\right )+128 \cos \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+\frac {21}{\left (\cos \left (\frac {1}{4} (c+d x)\right )-\sin \left (\frac {1}{4} (c+d x)\right )\right )^2}-\frac {21}{\left (\sin \left (\frac {1}{4} (c+d x)\right )+\cos \left (\frac {1}{4} (c+d x)\right )\right )^2}-\frac {1}{\left (\cos \left (\frac {1}{4} (c+d x)\right )-\sin \left (\frac {1}{4} (c+d x)\right )\right )^4}+\frac {1}{\left (\sin \left (\frac {1}{4} (c+d x)\right )+\cos \left (\frac {1}{4} (c+d x)\right )\right )^4}+150 \log \left (\cos \left (\frac {1}{4} (c+d x)\right )-\sin \left (\frac {1}{4} (c+d x)\right )\right )-150 \log \left (\sin \left (\frac {1}{4} (c+d x)\right )+\cos \left (\frac {1}{4} (c+d x)\right )\right )\right )}{8 d (a (\cos (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(Cos[(c + d*x)/2]^5*(150*Log[Cos[(c + d*x)/4] - Sin[(c + d*x)/4]] - 150*Log[Cos[(c + d*x)/4] + Sin[(c + d*x)/4
]] + 128*Cos[(d*x)/2]*Sin[c/2] + 128*Cos[c/2]*Sin[(d*x)/2] - (Cos[(c + d*x)/4] - Sin[(c + d*x)/4])^(-4) + 21/(
Cos[(c + d*x)/4] - Sin[(c + d*x)/4])^2 + (Cos[(c + d*x)/4] + Sin[(c + d*x)/4])^(-4) - 21/(Cos[(c + d*x)/4] + S
in[(c + d*x)/4])^2))/(8*d*(a*(1 + Cos[c + d*x]))^(5/2))

________________________________________________________________________________________

fricas [A]  time = 1.12, size = 198, normalized size = 1.37 \[ \frac {75 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (32 \, \cos \left (d x + c\right )^{2} + 85 \, \cos \left (d x + c\right ) + 49\right )} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/64*(75*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 + 2*s
qrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c
) + 1)) + 4*sqrt(a*cos(d*x + c) + a)*(32*cos(d*x + c)^2 + 85*cos(d*x + c) + 49)*sin(d*x + c))/(a^3*d*cos(d*x +
 c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

giac [A]  time = 3.13, size = 124, normalized size = 0.86 \[ -\frac {\frac {{\left ({\left (\frac {2 \, \sqrt {2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{2}} - \frac {17 \, \sqrt {2}}{a^{2}}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {83 \, \sqrt {2}}{a^{2}}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}} - \frac {75 \, \sqrt {2} \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{a^{\frac {5}{2}}}}{32 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/32*(((2*sqrt(2)*tan(1/2*d*x + 1/2*c)^2/a^2 - 17*sqrt(2)/a^2)*tan(1/2*d*x + 1/2*c)^2 - 83*sqrt(2)/a^2)*tan(1
/2*d*x + 1/2*c)/sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) - 75*sqrt(2)*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a
*tan(1/2*d*x + 1/2*c)^2 + a)))/a^(5/2))/d

________________________________________________________________________________________

maple [A]  time = 0.42, size = 208, normalized size = 1.43 \[ \frac {\sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-75 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+64 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+21 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{32 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a^{\frac {7}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3/(a+a*cos(d*x+c))^(5/2),x)

[Out]

1/32/cos(1/2*d*x+1/2*c)^3*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-75*2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)
^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*a*cos(1/2*d*x+1/2*c)^4+64*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1
/2*d*x+1/2*c)^4+21*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)^2-2*2^(1/2)*(a*sin(1/2*d*
x+1/2*c)^2)^(1/2)*a^(1/2))/a^(7/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\cos \left (c+d\,x\right )}^3}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^3/(a + a*cos(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^3/(a + a*cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________